Part Number Hot Search : 
7BZXC BJ33CA KAQY414A 7BZXC Z25LA221 FP50N 15MQ040N 1N3903
Product Description
Full Text Search
 

To Download MMSZ4683-V Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 MMSZ4681-V to MMSZ4717-V
Vishay Semiconductors
Small Signal Zener Diodes
Features
* Silicon planar Zener diodes * Standard Zener voltage tolerance is 5 %. e3 * High temperature soldering guaranteed: 260 C/4x10 s set terminals * These diodes are also available in DO35 case with the type designation 1N4681...1N4717 and SOT23 case with the type designation MMBZ4681-V... MMBZ4717-V * Lead (Pb)-free component * Component in accordance to RoHS 2002/95/EC and WEEE 2002/96/EC
17431
Mechanical Data
Case: SOD123 plastic case Weight: approx. 9.3 mg Packaging codes/options: GS18/10K per 13" reel (8 mm tape), 10K/box GS08/3K per 7" reel (8 mm tape), 15K/box
Absolute Maximum Ratings
Tamb = 25 C, unless otherwise specified
Parameter Zener current (see Table "Characteristics") Power dissipation TL = 75 C Ptot 500 1) mW Test conditions Symbol Value Unit
Note 1) On FR - 4 or FR - 5 board with minimum recommended solder pad layout
Thermal Characteristics
Tamb = 25 C, unless otherwise specified
Parameter Thermal resistance junction to ambient air Maximum junction temperature Storage temperature range Note 1) On FR - 4 or FR - 5 board with minimum recommended solder pad layout Test conditions Symbol RthJA Tj Tstg Value 3401) 150 - 55 to + 150 Unit K/W C C
Document Number 85773 Rev. 1.7, 16-Jul-08
For technical support, please contact: Diodes-SSP@vishay.com
www.vishay.com 1
MMSZ4681-V to MMSZ4717-V
Vishay Semiconductors Electrical Characteristics
Tamb = 25 C, unless otherwise specified
Maximum VF = 0.9 V at IF = 10 mA Zener voltage 1) Partnumber Marking code VZ at IZT = 50 A V typ. MMSZ4681-V MMSZ4682-V MMSZ4683-V MMSZ4684-V MMSZ4685-V MMSZ4686-V MMSZ4687-V MMSZ4688-V MMSZ4689-V MMSZ4690-V MMSZ4691-V MMSZ4692-V MMSZ4693-V MMSZ4694-V MMSZ4695-V MMSZ4696-V MMSZ4697-V MMSZ4698-V MMSZ4699-V MMSZ4700-V MMSZ4701-V MMSZ4702-V MMSZ4703-V MMSZ4704-V MMSZ4705-V MMSZ4706-V MMSZ4707-V MMSZ4708-V MMSZ4709-V MMSZ4710-V MMSZ4711-V MMSZ4712-V MMSZ4713-V MMSZ4714-V MMSZ4715-V MMSZ4716-V MMSZ4717-V CF CH CJ CK CM CN CP CT CU CV CA CX CY CZ DC DD DE DF DH DJ DK DM DN DP DT DU DV DA DZ DY EA EC ED EE EF EH EJ 2.4 2.7 3 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.8 7.5 8.2 8.7 9.1 10 11 12 13 14 15 16 17 18 19 20 22 24 25 27 28 30 33 36 39 43 min. 2.28 2.57 2.85 3.14 3.42 3.71 4.09 4.47 4.85 5.32 5.89 6.46 7.13 7.79 8.27 8.65 9.5 10.5 11.4 12.4 13.3 14.3 15.2 16.2 17.1 18.1 19 20.9 22.8 23.8 25.7 26.6 28.5 31.4 34.2 37.1 40.9 max. 2.52 2.84 3.15 3.47 3.78 4.1 4.52 4.94 5.36 5.88 6.51 7.14 7.88 8.61 9.14 9.56 10.5 11.6 12.6 13.7 14.7 15.8 16.8 17.9 18.9 20 21 23.1 25.2 26.3 28.4 29.4 31.5 34.7 37.8 41 45.2 2 1 0.8 7.5 7.5 5 4 10 10 10 10 10 10 1 1 1 1 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 1 1 1 1.5 2 2 2 3 3 4 5 5.1 5.7 6.2 6.6 6.9 7.6 8.4 9.1 9.8 10.6 11.4 12.1 12.9 13.6 14.4 15.2 16.7 18.2 19 20.4 21.2 22.8 25 27.3 29.6 32.6 Max. reverse current IR A Test voltage VR V
Note 1) Measured with device junction in thermal equilibrium
www.vishay.com 2
For technical support, please contact: Diodes-SSP@vishay.com
Document Number 85773 Rev. 1.7, 16-Jul-08
MMSZ4681-V to MMSZ4717-V
Vishay Semiconductors Typical Characteristics
Tamb = 25 C, unless otherwise specified
Ptot - Total Power Dissipation (mW) 600 500 400 300 200 100 0 0
20850
TKVZ - Temperature Coefficient of VZ (10-4/K)
15
10
5
IZ = 5 mA
0
-5 0
95 9600
20 40 60 80 100 120 140 160 Tamb - Ambient Temperature (C)
10
20 40 30 VZ - Z-Voltage (V)
50
Figure 1. Total Power Dissipation vs. Ambient Temperature
Figure 4. Temperature Coefficient of Vz vs. Z-Voltage
1000 CD - Diode Capacitance (pF) VZ - Voltage Change (mV)
200
Tj = 25 C
150
VR = 2 V Tj = 25 C
100
100
IZ = 5 mA
10
50
1 0
95 9598
0 5 10 15 20 25
95 9601
0
5
10
15
20
25
VZ - Z-Voltage (V)
VZ - Z-Voltage (V)
Figure 2. Typical Change of Working Voltage under Operating Conditions at Tamb=25C
Figure 5. Diode Capacitance vs. Z-Voltage
1.3 VZtn - Relative Voltage Change
VZtn = VZt/VZ (25 C)
100 IF - Forward Current (mA) 10
Tj = 25 C
1.2 1.1 1.0 0.9 0.8 - 60
TKVZ = 10 x 10-4/K 8 x 10 /K 6 x 10-4/K 4 x 10 /K 2 x 10-4/K
-4 -4
1
0
- 2 x 10-4/K - 4 x 10-4/K
0.1 0.01 0.001 0
95 9599
60 120 180 240 Tj - Junction Temperature (C) 0
0.2
0.4
0.6
0.8
1.0
95 9605
VF - Forward Voltage (V)
Figure 3. Typical Change of Working Voltage vs. Junction Temperature
Figure 6. Forward Current vs. Forward Voltage
Document Number 85773 Rev. 1.7, 16-Jul-08
For technical support, please contact: Diodes-SSP@vishay.com
www.vishay.com 3
MMSZ4681-V to MMSZ4717-V
Vishay Semiconductors
100 80 IZ - Z-Current (mA)
Ptot = 500 mW Tamb = 25 C
1000
rZ - Differential Z-Resistance ()
IZ = 1 mA
100
5 mA
60 40 20 0 0 4
10 10 mA
1
Tj = 25 C
95 9604
12 6 8 VZ - Z-Voltage (V)
20
95 9606
0
5
10
15
20
25
VZ - Z-Voltage (V)
Figure 7. Z-Current vs. Z-Voltage
Figure 9. Differential Z-Resistance vs. Z-Voltage
50 40
IZ - Z-Current (mA)
Ptot = 500 mW Tamb = 25 C
30 20 10 0
15
20
25
30
35
95 9607
VZ - Z-Voltage (V)
Figure 8. Z-Current vs. Z-Voltage
Zthp - Thermal Resistance for Pulse Cond. (KW)
1000
tP/T = 0.5 100 tP/T = 0.2 Single Pulse 10 tP/T = 0.1 tP/T = 0.02 iZM = (- VZ + (VZ2 + 4rzj x T/Zthp) 1/2)/(2rzj) 100 101 tP - Pulse Length (ms) 102
95 9603
RthJA = 300 K/W T = Tjmax - Tamb
tP/T = 0.01 tP/T = 0.05
1 10-1
Figure 10. Thermal Response
www.vishay.com 4
For technical support, please contact: Diodes-SSP@vishay.com
Document Number 85773 Rev. 1.7, 16-Jul-08
MMSZ4681-V to MMSZ4717-V
Vishay Semiconductors Package Dimensions in millimeters (inches): SOD123
17432
Document Number 85773 Rev. 1.7, 16-Jul-08
For technical support, please contact: Diodes-SSP@vishay.com
www.vishay.com 5
MMSZ4681-V to MMSZ4717-V
Vishay Semiconductors Ozone Depleting Substances Policy Statement
It is the policy of Vishay Semiconductor GmbH to 1. Meet all present and future national and international statutory requirements. 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment. It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs). The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances. Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents. 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively. 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA. 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively. Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.
We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use. Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
www.vishay.com 6
For technical support, please contact: Diodes-SSP@vishay.com
Document Number 85773 Rev. 1.7, 16-Jul-08
Legal Disclaimer Notice
Vishay
Disclaimer
All product specifications and data are subject to change without notice. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product. Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. Product names and markings noted herein may be trademarks of their respective owners.
Document Number: 91000 Revision: 18-Jul-08
www.vishay.com 1


▲Up To Search▲   

 
Price & Availability of MMSZ4683-V

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X